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Overview of AMTRAN code

• AMTRAN is a deterministic (Sn) neutron transport code
• Computation is performed on a collection of Cartesian finite element grids
• Grids are at various levels of refinement based upon the local mean free

path of the neutrons
• The time-independent transport equation is
• It is solved using a set of coupled single-energy group transport equations,

each of which can be solved in parallel (e.g., 32 separate energy groups)
• It is further discretized into angles, each of which may be likewise computed

independently (typically 3 to 16 angles)
• In our implementation the energy groups are distributed among the

processors and the angles are distributed among the threads
• The biggest remaining potential source of parallelism is in spatial domain

decomposition (in theory unlimited, currently implemented to 512 domains)
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Definitions

• Grid: a rectangular prism (brick) subdivided into zones according to a
uniform Cartesian mesh

• Domain: a collection of grids making up a rectangular prism (brick)
representing a portion of the physical space being modeled

• Master: an equivalence class of domains which reside on a single
processor or in parallel on a group of processors

• Sweep: a grid computation associated with a direction (+1 or -1 in
each of the Cartesian axes)

• Sub-iteration: the smallest unit of computation (consisting of a
collection of sweeps) that can be performed without the exchange of
messages among processors

• Iteration: a collection of sub-iterations (punctuated by message
passing) in which every domain is swept from every possible
direction

• Cycle: a collection of iterations which converges to an answer



Simple example of a two-dimensional domain
decomposition



Example of sweep dependencies (precedence
relations) for seven grids in four domains

• Upper left and lower right boxes show inverse relationship
• Similarly for lower left and upper right boxes



Simplifying assumptions

• The goal is to obtain a set of canonical configurations with known properties
• Treat all grids in a domain as a single featureless computational unit
• Perform domain splits in a strict sequence to achieve powers of two uniformly

on each axis
• Any pair of processors either operates on the same domains (possibly

discontinuous parts of the physical space) or they have no domains in
common, i.e., belong to equivalence classes according to their master

• The number of domains per master is uniform and a power of two, determined
by the particular configuration of splits

• The determination of which sweeps will be performed in a sub-iteration are
determined by a script in order to segregate work into equal time packets



Order and degree of partitioning according to
number of domains

• Binary decomposition determined by an approximate weighting
scheme (accurate to ±20%)

• Choice of 1st, 2nd, 3rd axis among Cartesian axes (x,y,z) is based
upon geometrical considerations and presence of symmetry planes

• Order of computations closely tied to order of decomposition



Illustration of domain adjacency criterion

• In order to pass adjacency criterion, domains sharing a common
border must have coordinates differing by no more than one in
any direction

• In the example above, the initial vertical decomposition
guarantees the criterion for the first coordinate

• In the example on the right domains (4,2) and (3,4) share a
border, hence violating the criterion in the second coordinate



Numerical representation of sweep directions
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Sweep pattern for 16 domains in two
dimensions

• Vertical lines do not necessarily align, but adjacency criterion met
• Blank domains represent absence of computation
• Each domain is swept in each of four directions
• Overall efficiency rate is only 40% (4 sweeps per 10 sub-iterations)



Sweep directions for a 4x4 set of domains

• Left side is for 16 masters (and domains) with overall efficiency of 40%
• Right side represents superposition of upper and lower halves of left

side, giving 8 masters (still 16 domains) with efficiency of 80%
• Left side can be viewed as a discontinuous tile for tiling the plane at ±8

units vertically and ±8 units horizontally (as on the right)



Schematic view of 32 domains in a 4x4x2
configuration

• Arrows represent sweeps for the first sub-iteration
• Some corner domains are numbered according to their

coordinates
• The order of the coordinates represents the order of binary

decomposition according to axis



Tabular representation of sweeps for 32
domains in a 4x4x2 decomposition

• 16 masters, 2 domains per master, 18 sub-iterations
• 2 copies of tile horizontally, ½+½+½+½ vertically (total of 4)
• Theoretical efficiency = 16/18 (89%)



Tabular representation of sweeps for 64
domains in a 4x4x4 decomposition

• 32 masters, 2 domains per master, 22 sub-iterations
• 4 copies of tile horizontally, 2 vertically (total of 8)
• Tile replication at 4 units horizontally, 16 units vertically
• Theoretical efficiency = 16/22 (73%)



Theoretical efficiencies for various domain
decomposition strategies

• All but the largest configurations have been implemented
• “Theoretical” means perfect load balance and no

communications overhead



Computational efficiencies



Timing comparison of theoretical efficiencies
with domain overloading

• Problem has s8 quadrature with 32 energy groups, fourfold symmetry
• Corresponds to timing of ~1200 seconds for 100% efficiency
• Efficiency × time is nearly constant, as expected
• With lower symmetry such results are more difficult to achieve
• In general, larger configurations (with more domains) require corresponding finer

meshes (to allow partitions to be accurately placed for best load balance)
• Other timing studies generally bear out the results shown here
• Configurations with up to 512 domains have been successfully tested



Efficiency loss in distributing a constant
problem to larger numbers of processors
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Effect of domain overloading in the case of
 16-way spatial parallelism
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Effect of domain overloading in the case of
32-way spatial parallelism
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Effect of domain overloading in the case of
64-way spatial parallelism

Efficiencies for 64-Way Spatial Parallelism
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Other considerations and conclusions

• Dynamic load rebalancing (after the initial decomposition) has been
tested and found to be effective for small numbers of domains

• Enforcing the adjacency criterion at the expense of perfect load
balancing is effective, otherwise scripting of sweeps is impossible
and global timing conflicts result

• For large numbers of domains it is important that there be no
“outliers” on the high side (in terms of load balance) since they
dominate the computation

• The automated load-balancing algorithm was tested against load
balancing by hand to verify its effectiveness

• The new scheme has enabled computations to be performed to a
much higher degree of parallelism than previously


